\qquad
Date \qquad Period: \qquad

Write an equation for the quadratic function whose graph contains the given characteristics.

1. has a y-intercept of 4 and the point $(2,0)$ is the vertex
2. has x-intercepts at $(-4,0)$ and $(0,0)$ and the point $(-2,4)$ is the vertex
3. passes through the point $(1,2)$ and the point $(3,4)$ is the vertex
4. passes through the points $(1,0),(4,3)$, and $(5,8)$
5. passes through the points $(-2,7),(0,1)$, and $(8,17)$
6. Among all the rectangles whose perimeters are 100 feet, find the dimensions of the one with maximum area.
7. A farmer wants to put a fence around a rectangular garden. Only 3 sides must be fenced, since a rock wall will form the fourth side. If he uses 60 m of fencing, what is the maximum area possible?
8. Find two positive real numbers whose product is a maximum. The sum of the first and three times the second is 30 .
9. A manufacturer of lighting fixtures has daily production costs of $C=800-10 x+0.20 x^{2}$, where C is the total cost (in dollars) and x is the number of units produced. How many fixtures should be produced each day to yield a minimum cost?

Find all the zeros of the function.

10. $f(x)=x^{3}-2 x^{2}+20 x-40$
11. $f(x)=6 x^{3}+x^{2}-4 x+1$
12. $f(x)=x^{3}-x^{2}-8 x+8$
13. $f(x)=x^{4}+x^{3}-16 x^{2}+4 x-80$
14. $f(x)=x^{4}+x^{3}-13 x^{2}-7 x+30$

Write a least degree polynomial given the zeros (roots) of the function.

15. $x=-2,-\frac{1}{3},-\frac{1}{5}$
16. $x=4, \pm \sqrt{3}$
17. $x=4,-5,2 i$
18. Use function composition to prove algebraically that $f(x)$ and $g(x)$ are inverses of one another. $f(x)=7 x+4$
$g(x)=\frac{1}{7} x-\frac{4}{7}$
